Hall Physics Above the Lunar Surface and Implications for Magnetic Reconnection

Mozer et al., 2002

Ion diffusion region encounter near the magnetopause by Polar

Polar magnetopause crossing showing evidence of demagnetized ions and magnetized electrons.

Mozer et al., 2002

How does the near lunar surface environment compare?

Results from Saito et al., 2012 consistent with Hall MHD, and simulations from Jarvinen et al., 2014 show a similar field structure.

Where was THEMIS-ARTEMIS in its orbit?

Credit: K. H. Glassmeier

Where was THEMIS-ARTEMIS in relation to the crustal fields on the surface?

THEMIS-ARTEMIS observations of field line modification

Clear indication of modification by crustal magnetic field in the magnetometer data.

Localized enhancement of Hall E-Field coincident with crustal magnetization.

Result 2:

Reconnection may be Contributing to the Closed Field Line Topology Observations

In Conclusion...

- THEMIS-ARTEMIS observations confirm that ions become demagnetized near crustal magnetic fields.
 - The generated Hall E-field is concentrated near regions of crustal magnetization.
- THEMIS-ARTEMIS electron pitch angle distributions suggest that within this region a field line topology change was traversed.
 - The change in field line topology was shown as a transition from counterstreaming electron beams to a double-sided loss cone distribution.
 - The change in field line topology may have been facilitated by the reconnection between IMF and crustal magnetic fields, most likely through electron-only reconnection.

Thank you for your time!

Questions?